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Abstract--A one-dimensional two-fluid model is described for the analysis of critical flows in pipes of 
nondiverging cross-sectional area. The model accounts for thermal nonequilibrium between the liquid and 
vapor bubbles and for interphase relative motion. Closure of the set of governing equations is performed 
with constitutive relationships which determine the pressure drop along the flow channel as a function 
of the flow regime, and the number and rate of growth of vapor bubbles in a variable temperature field 
in terms of the problem's primary state variables and geometrical configuration. An empirical correlation 
is derived which fits the number density of bubble nuclei in the flow as a function of the flow channel 
length-to-diameter ratio. Model predictions compare favorably with experimental data in small- and 
large-scale systems over a wide range of pressures and pipe diameters and lengths. 
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1. I N T R O D U C T I O N  

The thermal hydraulic design and safety analysis of light water nuclear reactors involves the 
determination of  the water conditions in the primary cooling system following a hypothetical 
rupture of  a vessel or a pipe. Reliable estimation of the maximum flow (also known as critical or 
choked flow) and the fluid characteristics exiting from the ruptured flow circuit is a problem of 
fundamental importance in this case, as it determines the time at which the core is uncovered, 
and the forces produced by the expanding jet on the pipe and surrounding equipments in the 
vicinity of  the jet. Physical understanding of the problem of  two-phase critical flow is also useful 
in the design of  boilers, refrigeration and desalination equipments and in the handling of  liquefied 
gases. 

In single-phase fluids the phenomena of critical flow is well-understood and can be readily 
computed once the initial stagnation conditions and the geometry of the flow channel are given. 
However, while in single-phase flow the critical fluid velocity equals the local isentropic sound 
velocity, the critical velocity in two-phase flow is far more complicated to predict. This is due mainly 
to the interphase mechanical (slip) and thermal nonequilibrium resulting from the rapid expansion 
of  the fluid through the break. 

The main physical and mathematical aspects of the problem of two-phase critical flow have been 
discussed in several review articles (Bour6 1977; Jones & Saha 1977; Ardron & Furness 1976; Wallis 
1980; Isbin 1980; Giot  1981; Elias & Lellouche 1993). A comprehensive review and discussion of 
the analytical models and key experimental results has also been compiled by D'Auria & Vigni 
(1980) and by Abdollahian et  al. (1980, 1982), with about 250 references cited. The complexity of 
the thermodynamic phenomena taking place during a blowdown process resulted in many studies 
which simplified the evaluation of some of  the transport phenomena taking place at the interface 
between the liquid and vapor bubbles in the flow. For  instance, in the homogeneous equilibrium 
model (HEM) the interphase relative motion is neglected and a thermodynamic equilibrium is 
assumed. The HEM provides good results for the critical flow rate in long tubes where there is 
sufficient time for the two phases to reach equilibrium. The model, however, underpredicts the 
critical flow rate in short tubes where thermal and mechanical nonequilibrium effects must be 
considered as functions of the flow regime. 
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In the last two decades a new approach has evolved based on a two-fluid representation of the 
flow. This representation, while allowing a detailed description of the interphase nonequilibrium 
phenomena, requires a great deal of information to complete the model formulation, such as 
constitutive relations to describe the interphase heat, mass and momentum transfer. Since this 
information cannot be obtained directly from measurements, critical flow models utilizing the 
conservation and balance equations of each phase generally differ in their treatment of the 
mechanical and thermal nonequilibrium between the phases. The interfacial momentum transfer 
(slip) is represented either by the drift-flux approximation, as in Kaizerman et al. (1983) and Elias 
& Chambr6 (1984), or by using a set of semiempirical correlations which determine the interphase 
drag forces (Ardron 1978; Richter 1981; Dobran 1987; Sami & Duong 1989). 

Various levels of approximation are also used to estimate the heat and mass transfer rate at the 
liquid-vapor interface. For instance, Richter (1981) considers interphase conduction and convec- 
tion heat transfer in a uniformly superheated liquid phase, while Ardron (1978) neglects the 
convection term and the bubble sphericity to derive an asymptotic solution of the bubble growth 
equation in a linearly varying temperature field. Lee & Schrock (1990) represented the initial degree 
of nonequilibrium by a modification of the Alamgir & Lienhard (1981) pressure undershoot 
correlation. A derivative-dependent exchange of mass and energy at the liquid-vapor interface is 
used in Sami & Duong (1989). 

The rate of evaporation depends on the number density of vapor nuclei in the fluid. This 
parameter is difficult to measure and is typically considered either as a constant (Richter 1981; 
Dobran 1987) or is calculated by the homogeneous nucleation theory (Ardron 1978; Elias & 
Chambr6 1984). In the latter case, the resulting number density of bubbles varies along the 
pipe. 

The present work introduces a nonequilibrium two-fluid critical flow model, concentrating on 
the important mechanisms of heat and mass transfer to the vapor bubbles forming in the flow. A 
closed-form relation is derived to predict the bubbles rate of growth by conduction and convection 
in a superheated liquid, assuming an exponential pressure decay along the flow pipe. To close the 
model equations, an empirical correlation is derived which relates the number density of bubbles 
in the flow to the pipe's length-to-diameter ratio. With these improvements, the proposed model 
is shown to be applicable over a large range of stagnation conditions and flow path geometries. 

2. PHYSICAL DESCRIPTION OF THE MODEL 

The problem considered is that of a compressed fluid expanding from a large vessel through an 
open pipe. The model consists of five conservation equations that include mass and momentum 
equations for each phase and a combined energy equation for the two-phase mixture. A separate 
equation is introduced to relate the void spatial distribution to the growth rate of the vapor bubbles 
along the flow path. 

The main assumptions underlying the model are: one-dimensional flow--although observations 
have indicated two-dimensional effects in two-phase critical flow (Edwards 1968), these phenomena 
have not yet gained a solid theoretical explanation. Next, the process is taken to be at steady-state. 
This is a commonly accepted assumption since transient effects during a biowdown of a large vessel 
are typically small. The flow is further assumed to be adiabatic. The only mode of heat transfer 
considered in the model is the internal exchange of heat between the phases during the formation 
and growth of vapor bubbles in the flow. At a given cross section along the pipe the vapor bubbles 
are considered to have equal sizes and to be uniformly distributed. Local pressure losses are 
assumed to take place adiabatically. The liquid temperature is supposed to remain constant at the 
entrance to the flow channel, while the vapor (when present) is assumed to be saturated with respect 
to the local pressure. With these assumptions the present model governing equations are (Wallis 
1969): 

vapor phase continuity, 

1 d x =  1 d p c + l d u G  1 dE 1 dA 
xd--~ p~ d--~-- ~ uG ~-z + ~-~z + ~ d--~ ; [1] 
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liquid phase continuity, 

1 dx 1 dpL 

1 - -  x d z  = PL dz 

vapor phase momentum, 

duc dP 
xG dz = -E ~z 

liquid phase momentum, 

1 du L 1 dE 1 dA 

UL dz 1 - - E d z  + A  d z '  

- -  --FLG--F,.c--q(Uc--UL)G~z z gpoe cosO; 

[2] 

[31 

dE dR 
- -  = 4nR 2N - -  [6] 
dz dz 

Where z is an axial coordinate and the subscripts G and L denote the vapor and liquid phase, 
respectively. E, x and p are the void fraction, flow quality and density, respectively, A is the pipe 
cross-sectional area, FLG is the drag forces at the liquid-vapor interface and FwG and FwL are the 
drag forces per unit volume exerted by the tube wall on the vapor and liquid, respectively. G is 
the total mass flux, h is enthalpy, P is the system pressure and u is velocity, r/ is a momentum 
distribution coefficient and 0 is the pipe inclination angle. The vapor bubbles are characterized by 
their number density, N, and radius, R. 

The solution of  the model equations, [1]-[6], for the six state variables (hL, Uc, UL, X, P and E) 
requires constitutive relations for FEe, FwL, Fwc, q and dR/dz. The thermodynamic properties 
pG(P), he(P),  pL(P, hE) and their derivatives with respect to P and hE, are calculated using the Haar 
et al. (1984) tables for saturated and superheated steam and water. The pipe geometry and 
orientation are considered to be known such that A = A (z). The total mass flux, G, is treated as 
a parameter and the bubbles number density, N, is determined by a newly developed empirical 
correlation, as discussed later. The value of the momentum distribution coefficient, r/, in the range 
0 to l, has been found to have only minor influence on the predictions of  the pressure drop. r /=  0.5 
is used in this study. The interfacial force, FLc, is modeled as follows (Richter 1981): 

FLC = 2 Po (Uc -- UL)IUG -- ULI+ CEpL UC "~Z (uc -- UL), [71 

where Dpi is the pipe diameter and C is a virtual mass coefficient, taken as C = 0.5 for bubbly flow 
(E < 0.2) and C = 0 otherwise. The interfacial friction factor, Cn, is given for bubbly and annular 
(E > 0.8) flow as 

ICD%//~( 1 -- E)-I. 7 PL Dpi 

Cn = .~0.005[1 + 75(1 - E)]Pc 2R annularbUbbly [8] 

In the intermediate range, between bubbly flow and annular flow, the interfacial friction factor 
is interpolated linearly with void fraction, c, between the two values given in [8]. The drag coefficient 
for a single bubble, Co, in [8] depends on the bubble Reynolds number, Re: 

[ '24(1 ReO.6ST) 
= IR e  [91 

CD + 0.15 Re < 1000 

0.44 Re > 1000, 

void fraction distribution, 

(1 - x ) G  duL - ( 1  - E )  dP  dx 
= dz + F L G - - F w L  + ( 1 - - r l ) ( U G - - U L ) G - - ~ Z -  gPL(l  --  E)COS 0; [4] dz 

mixture energy, 

dx xFdhc duo] _ x)FdhL dUEl 
[hc-hL+O.5(u2-u[) l - -~z+ k d  z +uc--d-Z-ZZ +(1  t. dz +UL dz j + g c o s O = O ;  [5] 

and 
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where Re is defined as 

Re  = 2pcR (I  - E ) l u c -  UL[ [10] 
/aL 

The wall  vapor  friction term, Fwc, in the m o m e n t u m  equat ion  [3] is neglected and FwL, is modeled  
(Chisho lm 1973) as 

FwL = -- [ 1 + (F 2 _ 1 )] [Bx (2 - .>/2( 1 - x)~2 - .)/2 + x 2 - .], [ 11 ] 

where  n = 0.25 and F is a physical  property coefficient defined by the square root  o f  the ratio 
between  the pressure gradient due to friction if  the total mixture f lows as vapor  only,  APGo, and 
that if  the total  mixture f lows as liquid only,  APLo: 

= ( A P c i o ' ]  °$ / o o  PL .  [12] 
r =Ao po' 

fGo and f co  are the s ingle-phase friction coefficients for the vapor  and liquid, respectively. 
The coefficient B in [1 l] is given by 

C F  - 2 2 - n q_ 2 
B = F 2 -  1 ' [13] 

where 

uo v po \ ~ pc J 
[14] 
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Figure 1. Comparison of the present theoretical predictions with Sozzi & Sutherland's (1975) rounded 
entrance nozzle 2, with saturated and two-phase mixture stagnation conditions. 
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To close the model set of  equations, a constitutive relation was developed (Dagan 1989) relying 
on Olek et al. (1990), which predicts the bubble growth rate along the pipe. The relation is based 
on a diffusion-controlled growth of  a vapor bubble in a superheated liquid, assuming an 
exponential pressure decay along the flow pipe. From the Clausius-Clapeyron relation the bubble 
vapor temperature is given by a linear function of  the form 

T s ( / )  = T s ( 0 )  - -  at, [15]  

where t is time. The resulting relation for the bubble radius is 

dR K L ( T L ( 0 )  - -  Ts(0) + at TL(0 ) -- Ts(0 ) + 2at 

d--z = PG hLc U G ~" R H x//~-oo/it 

0.6 Re °5 Pr°33[TL(0) - Ts(0)] "~ R dpG 

+ 2R J~ 3pG dz  ' 
[16] 

where TL(0) and Ts(0) are the initial liquid and saturation temperatures, respectively, hLG is the 
latent heat of  evaporation, KL is the liquid thermal conductivity, a is the rate of  liquid temperature 
variation, ~D is the liquid thermal diffusivity and Pr is the Prandtl number. Equation [16] accounts 
for convection and conduction heat transfer and neglects the short initial phase of  inertia-controlled 
bubble growth. To utilize [16], a time coordinate, t(z),  is defined as the time taken for a typical 
bubble to reach position z from some initial location where the flow is nearly stationary. The time 
satisfies the kinematic relation 

d t _  1 [17] 
dz  uG" 
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Figure 2. Comparison of the present theoretical predictions with Sozzi & Sutherland's (1975) rounded 
entrance nozzle 2, with subeooled stagnation conditions. 
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To predict the critical mass flux in a nondiverging flow channel of a given length, an exit mass 
flux, G is first postulated. Equations [1]-[6] and [16], [17] are then integrated to track the changing 
flow conditions along the channel, starting from the stagnation point at : = 0. The computation 
is terminated at a point, defined in this model as the choking plane, where the pressure gradient 
becomes arbitrarily large ( d p / d z  > 50 bar/mm). The postulated mass flux is changed iteratively 
until the choking plane coincides (within a prescribed error tolerance) with the pipe exit plane. The 
resulting mass flux is the critical mass flux for the specific experimental configuration. 

It should be noted that in converging-diverging nozzles the choking point may occur anywhere 
along the diverging section (Bilicki e t  a l .  1987; Bilicki & Kestin 1990; Lemonnier & Selmer-Olsen 
1992). To apply the present model in converging-diverging nozzles, it may be assumed that the 
choking plane occurs at the throat, such that the model equations are integrated in the converging 
section of the nozzle only. This assumption should result in an overestimation of the critical mass 
flux. However, since typically the predicted location of the choking plane is very sensitive to small 
variations in the mass flux, the error in the predicted mass flux is expected to be small. 

Numerical integration of the model equations was carried out, using the computer program Gear 
of the IMSL library. This algorithm was found suitable for this type of equations, which form a 
set of  stiff differential equations having a wide range of time constants. 

2 . 1 .  B u b b l e  n u m b e r  d e n s i t y  c o r r e l a t i o n  

Previous studies have demonstrated the importance of the bubbles' number density, N, and their 
initial radii distribution on the predicted critical mass flux. Ardron (1978) and Elias & Chambr6 
(1984) derived N from the homogeneous nucleation theory. Their model of bubble formation and 
growth implies a variable number density of bubbles along the flow conduit. Richter (1981) and 
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Figure 3. Comparison of the present model with Sozzi & Sutherland's 0975) sharp entrance nozzle data, 
with saturated and two-phase mixture stagnation conditions. 
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Figure 4. Comparison of the present model with Sozzi & Sutherland's (1975) sharp entrance nozzle data, 
with subcooled stagnation conditions. 

Dobran (1987) used a constant value for N, independent of the stagnation conditions and the design 
parameters of the system. The present model shows that there is a substantial influence of N on 
the predicted critical mass flow rate. To simplify the computations, an empirical relation is derived 
which yields the bubble number density as a function of the channel's length-to-diameter ratio, 
L/Dp~. The correlation's parameters were obtained by fitting to the data of Sozzi & Sutherland 
(1975), but the same function was found to satisfy the other data considered in this study: 

I2 4.0 + 2.0 In 
Opi,  

L3,0_28,n  
L/Dpi < 10 

L/Dpi > 10. 

[18] 

Equation [18] was tested in the range of 4 < L/Doi < 150. It demonstrates a correct physical trend 
by which the average density of vapor nuclei (and by [6], the rate of vapor generation) initially 
increases with L. As more vapor nuclei are introduced into the flow, the degree of thermal 
nonequilibrium is reduced and the rate of new bubbles formation is decreased. The location of the 
transition point in [18] at L/Dpi = 10 is in general agreement with other observations on the effect 
of L/Dpi on the critical flow rate. For instance, Henry (1970) postulated that vapor cannot be 
substantially generated in pipes with L/Dpi < 12. The effect of LID e is also discussed by Jones & 
Saha (1977) and Ardron (1978), where it is observed that the discharge flow in pipes up to 10 
diameters in length can be significantly larger than values obtained from homogeneous thermal 
equilibrium flow theory. 
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3. R E S U L T S  A N D  D I S C U S S I O N S  

The model was qualified in comparison with available high-pressure data on the adiabatic critical 
flow of water at subcooled, saturated or two-phase entry conditions. Predictions of the critical flow 
rate are found to be in favorable agreement with a wide range of experimental results in laboratory 
and commercial pipes. In figures 1 and 2 the model is compared with the data of Sozzi & Sutherland 
(1975) for saturated and subcooled stagnation conditions, respectively. The entrance geometry of 
nozzle 2 used in the experiments was approximated by a smooth elliptic contour which leads from 
the vessel into a straight 12.7 mm dia pipe. For subcooled entry conditions, bubbles are assumed 
to begin forming and grow when the system pressure drops to a level corresponding to more than 
3°C of liquid superheat. Predictions of the present model are generally shown to agree with the 
measured data. Larger deviations between the measured and predicted results are observed mainly 
for short tubes in which the critical mass flux is higher due to the large degree of thermal 
nonequilibrium. However, the average deviation is lower, in most cases, than the reported 
experimental errors. 

Figures 3 and 4 show the predicted critical flow rates for the sharp entrance nozzle configuration 
in the Sozzi & Sutherland (1975) experiments, having saturated and subcooled stagnation 
conditions, respectively. The results in this case are largely affected by the irreversible pressure drop 
at the entrance to the flow pipe. Although data scattering is more pronounced than observed in 
the predictions of the nozzle 2 data, model predictions follow the experimental trends. Deviations 
between measured and predicted results are generally < 25%. 

To investigate the predictive capability of the model for large-scale experiments, calculations 
were performed for a set of blowdown tests of the experimental program carried out at the 
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Marviken (1982) test facility. The discharge nozzle considered for these predictions had a rounded 
entrance, followed by a 500 mm constant dia test section from 166 to 1809 mm in length. Since 
the upstream conditions changed very slowly during the 50-80 s blowdown period relative to the 
rapid (100 ms) adjustment of the flow in the test section, the data were treated in a quasi-steady 
manner, assuming constant stagnation conditions. Calculated results are compared with observed 
mass flow rates for initially saturated conditions in figure 5. In most cases the predicted results agree 
with the measured flow rates within the specified measurement accuracy. Runs 6 and 14 are 
overpredicted in some cases by up to 30%. Equation [1 l] used to predict the laboratory scale data 
of Sozzi & Sutherland (1975) was applied also to the prediction of the Marviken results in figure 5. 

Marviken data with subcooled stagnation conditions are depicted in figure 6 for a range of pipe 
lengths and initial pressures. The maximum deviation between the measured and predicted flow 
rates is ,-. 25% and the average is < 10%. 

4. S U M M A R Y  A N D  C O N C L U S I O N S  

A one-dimensional two-fluid model is presented for solving the steady-state critical two-phase 
flow phenomena. The model is validated against data measured in small- and large-scale test 
systems. It is shown that a satisfactory agreement with experimental data can be obtained by proper 
modeling of the heat and mass transfer processes between the two phases and the number density 
of bubbles in the flow. The model accounts for thermal and mechanical nonequilibrium in a 
low-quality flow using a conduction-controlled bubble growth. This mode of bubble growth may 
not be valid near the choking plane where, as pointed out by Olek et al. (1990), other parameters, 
such as bubble inertia, may be important. 
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It is also recognized that the assumption of saturated vapor phase in a superheated liquid phase 
may not be realistic at high low qualities where vapor bubbles may coalesce to form a continuous 
phase. The model is, therefore, limited to low flow qualities in which direct thermal and momentum 
transfer between the bubbles may be neglected. Low quality critical flow is of great importance 
in the analysis of the initial phases of a depressurization transient in power reactors. 

An empirical correlation is derived for the number density of bubbles in the pipe as a function 
of the pipe's length-to-diameter ratio. The correlation, simplifies the mathematical model and may 
provide a basic understanding of the important parameters influencing the predicted critical flow 
rate. Results suggest that the discharge flow in pipes up to l0 diameters in length can be significantly 
larger than values obtained from homogeneous thermal equilibrium flow theory. 
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